Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617352

RESUMO

Circadian (~24 h) rhythms are a fundamental feature of life, and their disruption increases the risk of infectious diseases, metabolic disorders, and cancer1-6. Circadian rhythms couple to the cell cycle across eukaryotes7,8 but the underlying mechanism is unknown. We previously identified an evolutionarily conserved circadian oscillation in intracellular potassium concentration, [K+]i9,10. As critical events in the cell cycle are regulated by intracellular potassium11,12, an enticing hypothesis is that circadian rhythms in [K+]i form the basis of this coupling. We used a minimal model cell, the alga Ostreococcus tauri, to uncover the role of potassium in linking these two cycles. We found direct reciprocal feedback between [K+]i and circadian gene expression. Inhibition of proliferation by manipulating potassium rhythms was dependent on the phase of the circadian cycle. Furthermore, we observed a total inhibition of cell proliferation when circadian gene expression is inhibited. Strikingly, under these conditions a sudden enforced gradient of extracellular potassium was sufficient to induce a round of cell division. Finally, we provide evidence that interactions between potassium and circadian rhythms also influence proliferation in mammalian cells. These results establish circadian regulation of intracellular potassium levels as a primary factor coupling the cell- and circadian cycles across diverse organisms.

2.
Nat Commun ; 12(1): 4969, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404787

RESUMO

Multimeric cytoskeletal protein complexes orchestrate normal cellular function. However, protein-complex distributions in stressed, heterogeneous cell populations remain unknown. Cell staining and proximity-based methods have limited selectivity and/or sensitivity for endogenous multimeric protein-complex quantification from single cells. We introduce micro-arrayed, differential detergent fractionation to simultaneously detect protein complexes in hundreds of individual cells. Fractionation occurs by 60 s size-exclusion electrophoresis with protein complex-stabilizing buffer that minimizes depolymerization. Proteins are measured with a ~5-hour immunoassay. Co-detection of cytoskeletal protein complexes in U2OS cells treated with filamentous actin (F-actin) destabilizing Latrunculin A detects a unique subpopulation (~2%) exhibiting downregulated F-actin, but upregulated microtubules. Thus, some cells may upregulate other cytoskeletal complexes to counteract the stress of Latrunculin A treatment. We also sought to understand the effect of non-chemical stress on cellular heterogeneity of F-actin. We find heat shock may dysregulate filamentous and globular actin correlation. In this work, our assay overcomes selectivity limitations to biochemically quantify single-cell protein complexes perturbed with diverse stimuli.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Heterogeneidade Genética , Actinas/genética , Actinas/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diferenciação Celular , Linhagem Celular , Resposta ao Choque Térmico , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Análise de Célula Única/métodos , Tiazolidinas/farmacologia
3.
J Biol Rhythms ; 32(6): 570-582, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29172852

RESUMO

In plants, the circadian clock regulates the expression of one-third of all transcripts and is crucial to virtually every aspect of metabolism and growth. We now establish sumoylation, a posttranslational protein modification, as a novel regulator of the key clock protein CCA1 in the model plant Arabidopsis. Dynamic sumoylation of CCA1 is observed in planta and confirmed in a heterologous expression system. To characterize how sumoylation might affect the activity of CCA1, we investigated the properties of CCA1 in a wild-type plant background in comparison with ots1 ots2, a mutant background showing increased overall levels of sumoylation. Neither the localization nor the stability of CCA1 was significantly affected. However, binding of CCA1 to a target promoter was significantly reduced in chromatin-immunoprecipitation experiments. In vitro experiments using recombinant protein revealed that reduced affinity to the cognate promoter element is a direct consequence of sumoylation of CCA1 that does not require any other factors. Combined, these results suggest sumoylation as a mechanism that tunes the DNA binding activity of the central plant clock transcription factor CCA1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sumoilação , Fatores de Transcrição/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Biol Rhythms ; 32(6): 560-569, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29172926

RESUMO

The transcriptional circadian clock network is tuned into a 24-h oscillator by numerous posttranslational modifications on the proteins encoded by clock genes, differentially influencing their subcellular localization or activity. Clock proteins in any circadian organism are subject to posttranslational regulation, and many of the key enzymes, notably kinases and phosphatases, are functionally conserved between the clocks of mammals, fungi, and plants. We now establish sumoylation, the posttranslational modification of target proteins by the covalent attachment of the small ubiquitin-like modifier protein SUMO, as a novel mechanism regulating key clock properties in the model plant Arabidopsis. Using 2 different approaches, we show that mutant plant lines with decreased or increased levels of global sumoylation exhibit shortened or lengthened circadian period, respectively. One known functional role of sumoylation is to protect the proteome from temperature stress. The circadian clock is characterized by temperature compensation, meaning that proper timekeeping is ensured over the full range of physiologically relevant temperatures. Interestingly, we observed that the period defects in sumoylation mutant plants are strongly differential across temperature. Increased global sumoylation leads to undercompensation of the clock against temperature and decreased sumoylation to overcompensation, implying that sumoylation buffers the plant clock system against differential ambient temperature.


Assuntos
Arabidopsis/metabolismo , Relógios Circadianos , Sumoilação , Temperatura
5.
J Vis Exp ; (115)2016 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-27684315

RESUMO

The plant circadian clock allows the anticipation of daily changes to the environment. This anticipation aids the responses to temporally predictable biotic and abiotic stress. Conversely, disruption of circadian timekeeping severely compromises plant health and reduces agricultural crop yields. It is therefore imperative that we understand the intricate regulation of circadian rhythms in plants, including the factors that affect motion of the transcriptional clockwork itself. Testing circadian defects in the model plant Arabidopsis thaliana (Arabidopsis) traditionally involves crossing specific mutant lines to a line rhythmically expressing firefly luciferase from a circadian clock gene promoter. This approach is laborious, time-consuming, and could be fruitless if a mutant has no circadian phenotype. The methodology presented here allows a rapid initial assessment of circadian phenotypes. Protoplasts derived from mutant and wild-type Arabidopsis are isolated, transfected with a rhythmically expressed luminescent reporter, and imaged under constant light conditions for 5 days. Luminescent traces will directly reveal whether the free-running period of mutant plants is different from wild-type plants. The advantage of the method is that any Arabidopsis line can efficiently be screened, without the need for generating a stably transgenic luminescent clock marker line in that mutant background.


Assuntos
Arabidopsis/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Fenótipo , Protoplastos/fisiologia , Transfecção
6.
Nature ; 532(7599): 375-9, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27074515

RESUMO

Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético , Magnésio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Clorófitas/citologia , Clorófitas/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Humanos , Espaço Intracelular/metabolismo , Masculino , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...